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A GENERALIZATION OF THE K-V EQUILIBRIUM FOR AN INTENSE
RELATIVISTIC BEAM PROPAGATING IN A SOLENOID

1. I-MOD1JCTION

The Vlasov equilibrium for a charged particle beam in a uniform

axial magnetic field vith distribution function

f(r,p) - no/2xyo &(H --YOmc2) (P-0y0mc)

is examined, where no, yo, a and 0 are constants. An expansion for

which the dimensionless quantities 41b 2e2no/yomc
2, o b/c, and

are small is taken where b Is an order-one scale length. In the limit

that Yo P - and a -# 0, the K-V distribution is recovered (1,2, pp. 588-

594). The four constants in the distribution function, no, y0, * and

0 are related to the more natural specification of the beam by its

total current, total energy, canonical angular momentum, and

perpendicular emittance, en' respectively. As an example of a case

where the corrections to the K-V distribution are important, we discuss

the beam proposed for the Spiral Line Induction Accelerator (SLIA)

Proof-of-Concept Rxperiment (POC). [3].
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2. CHOICE OF VLASOV EQUILIBRIUM

Consider an equilibrium which is independent of z, the propagation

direction, and 0. The only fields are E r(r) - -dt/dr, B z (r) - 1/r

drA/dr, and B10(r) - -.dA z/dr, vhere # is the scalar potential and A0e and

A z are components of the vector potential. The constants of motion are

H - Inc 2+ Ze#, the energy,

L - r(p. + Za 0I/c), the canonical angular momentum, and

P.pz+ ZeA z/c, the canonical axial momentum,

12, pp. 84-881. We will retain the charge number Z which is -1 for
electrons. The situation we are most interested in is the description

of a beam traveling in an external, uniform solenoidal field, B z- B
for which A 0 et(r) - rB 0/2.

Any distribution of the form f(r,p) a f0(H,L,P), where fo is a

given function, is an equilibrium solution of the Vlasov equation [21.

As will be shown, the form from vhich the K-V can be derived is given by

f(r,p) - n 0/2nyom S(H-aL-Yomc 2 &(P-0,Yomc)

where n0,svr 0 and %are constants.

22
a0  eA./mc2

Consider 3an integrable function g(r,pr'P9Vpz). Define <g(r,p)> a

.fg(r,p)f(r,p)d p, then it can be shown that

no fn/2
<9 l drc (g( r, mcX cos(- ),mc~sin(,r) + mc'mc(%y0 -Zaz)) +

g(r,-mcX cos(-r),Nc~ein(r) + mc'V, ac(% 0-za))1 + Ksin(T)) (2)
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u~r2

S TO(1 - r)221/2

X _j r I +o (3)

1 I 1 - 1-2

Y1'0 UT 0a To(Z+11/
a 1- = r F[-u 2 r2 )+ O

U= 'a/. Z+ ]2. 1 -a 2 ) /

and

V= a/c

The assumption that Iur1 - Ior/cl < 1 has been made.

The bea radial extent is determined by the region for which the

argument of the square root in the expression for X is non-negative.

We are interested in parameter regimes which alloy rapidly

convergent pover series in the perpendicular momenta. To the lovest

orders ve have X2/y 2 - 1 -. 2 - 1/02- + order-one constant times (#/v,

a/y, al/Y or V2r2) and y2/ - v2r. For relativistic, low emittance

beams the first term is small because 0 a 1 and y0 
> > 1. Hovever, an

expansion in povers of the perpendicular momentum is also valid when yo

# 1 and % -* 0 at least for lov charge density beams vhere */yO, az/yO
and ae/T0 are small.

3



Note that <g> - 0 for all odd functions of pr"

3. EXAMPLES OF MOMENTS OF THE DISTRIBUTION

1) Particle density: ne 1 <> gives

no 0 vrZa . Z )(
ne -v_2r2 3/2 1+ ) )

Y o

This result is exact.

For .w-0 and f(r,p) - 6(H-y 0mc 2) the result is ne = no (1 - Z+/y0 )

[4, 2, pp. 122-1301 and the scalar potential is a modified Bessel

function out to the beam radius. The "nonrelativistic" or "rigid-rotor"

case is recovered if the v terms are dropped and lov current is assumed

so that Z#/y 0 Is ignored. This results in the flat-top radial density

of the K-V distribution [2, pp. 588-5941. The beams under study ill

not be flat-top, but they rill have a sharp radial cutoff.

2) Moments of the momenta: All integral povers of the momenta can

be integrated exactly. The ones of immediate interest are

<p8>/mc - no (XK/2 + Pav)

-no (X)i/2 + XvK + v2  )

p?/n c- no (3X
3 K/8 + 3)2?w/2 + 3Xv2lc/2 + v3 p) (5)

<p 2>/a2c2 . no X'2t/2 . no(l-v2 r2 )X2 /2

<Pp 2 n 3 c 3 = no (X02 K/8 + X'2 w/2) no(1-u2 r 2)(X3 K/8 + )2uv/2).

Moments involving y result in elliptic integrals.

4



Substituting from Eq. (3), ve get

<pel/yomc - novr (1_v2r2)1/2 X2 1 + U2  (6)
2yO (1-v r )

-nu ra0 Z n 0 r +1 (. -a )2]
-5/ 2 3/2 II
r O Y (1r) I Y

Consider the canonical angular momentum density,

<--  w r<pe r e e r2n° + n° 0  + higher order terms.

In a solenoid ra0 = r 2eB0/2mc
2 if the self-fields are neglected. In the case

of a beam created in a diode free of aagnetic field, the canonical angular so-

mentum is zero. This is assured, to lovest order, by W/c - v - -ZeBo/2me2y0

B0 (kG)/ 3.4y0 cm
-

Denote P1 - Pr + p O. Then

2 2r22 n [ vZa0  z+ 2 + 3v2r
4(1 - v2r2)5/2 -0 2(1-yr

13r2 8B Z#2 2 2 1  Za zj)2]eand

2 r

2 3 33 20 +l1vr 2 i vr~ (7)#

n,,ur 8( 22)9/2 1 + - I Y0

12~ 2 r vrZa. Z,12 r1 + Zazj 2

12 +o 3uo40-v2r2T I !-i

4 - v2r2

8(1- _ )'Lr7 1- (D 2]
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4. EXPANSION IN THE "BEAM" APPROXIMATION

In order to compute an equilibrium confiuration for this

distribution, ve need to compute several moments. Hence, ve nov examine

the expansion of y in an approximation relevant to beams of interest.

Define Tb _ (%2y02 + 1) 1/2 and .b - (1-1/rb2 ) / 2 " It follovs that

In order to call this a "beam" we make the following assumptions:

1 - % 02 _ 1170 2 . 1 - 7b 21/702 << 1,

(pr 2 + Pe 2 ) " (Ybmc) 2 f and

I Ze(AzA ,') / Ybmc2 1 < < 1 .

The last assumption can result from a "small" current or a "large" y.

The relativistic factor, y, is

y r 0 2c2 2 22

which, to first order in ( p2)2 + b2mc2 and aZ/yb , can be vritten

y 1 +, (8)

where ve have used P - %50v0mc. To the same order,

1 2 r ( ~ + p 2e Z'baz 1
* l -' 2 2 

2 Ybm c 7b •
2 2

Vz _ Pz i b Pr P+ .z
c Yoe l a - -2 2 2 -3

7bm c 7b
2 2

Ve Pe Pe P r Pe Za (9)( 2 Ymc 2 bc mc Ybmc 2T22r
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2 2

__ P P P ~ r + 9 +Z05 az ,and
C Y ~irc . Ybm cY

Zrw u2sIp2 p7ryo
B---=Yb+ Z+ -Z aZ - +~ p 2 r iy
* C 2 2 2  "

Note that by keeping the self-field corrections in y, the mean azimuthal

velocity Ve - <v>/<1> is not exactly ro (referred to as "rigid-rotor"

equilibria).

5. CALCULATION OF SOURCE TERMS FOR MAXVELL'S EQUATIONS

Ve calculate the charge and current densities to the order

indicated above: ve retain terms , */y, a , ay, ube', ib, v2b2, 'b+/y,

uba./y, '2b2ag/y, 3b3 , (1 - Yb2/O2) , and vb~(1 - Yb2/O 2 ) vhere b is a

characteristic length of the same order as the radial dimension for the

beam. The value of b is unimportant, as it does not appear in the final

equations.

1. Charge density, p - Ze<l>

3u2r2  rZa0  Z .

2. Axial current density, Ja = Ze<v5> 

O(32 2 2O 60  5YO Z

z ecn o O  - -+ (21

2 b Tb Y

31%k (vZa* Z!r2

2 20

2

7
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3. Azimuthal current density, JO - Ze<v,:

3"o 3 b 5 3 jb a
+ Zec nur 5 - - - YO

I Y b 4 yo 4 32y

v2 r22  2 2

Zecnur ( + - + a Y 1 } prc .

16 2 )2

If only the first term is kt.pt, ye obtain Je = Zecno~ir, rae becomes a

fourth-order polynomial in r, and * and az are the sums of fourth-order

polynomials and modified Bessel functions (inside the beam). For V 0 ,

the expression for Jzreduces to the correct expression to the proper

order in the expansion (4,2, pp. 122-130]. For the K-V distribution,

only the first term in the expressions for p, Jz and Jeare retained
[2, pp. 588-5942.

Let us introduce some dimensionless quantities. The dimensionless

radial coordinate is r/b. The dimensionless particle density is n0

2 2

4noub rc - nob(cm)2/2.83.l1 where rc - e21mc2 is the classical electron

radius ( a uniform 1 kA beam of 1 cm radius has a particle density n =
6.63.10 cm-3). The dimensionless angular parameter is iw m ob/c. The
dimensionless external solenoid field is # 2 = The

ft~~ Zeb/m 0 UB 1+/- 7kG.u

dimensionless current density is 3 * J4ueb /mc and the dimensionless

beau current is I/nmc3 i l(kA)/17. Nov the equations viii use

dimensionless quantities and drop the "-" and ye vill use w instead of

'I.

8
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6. POWER SERIES SOLUTION FOR THE POTENTIALS

We nov use the pover series expansions of the potentials:

Zn2n :n2n :n2n.
= n r az = t n r and rae - Zu rn. Setting the potentials

equal to 0 at the origin allolk; the sums to run from n-l to n=m.

We also define coefficients an, bn and cn for n-l to 5 from

Maxwell's equations for the potentials inside the beam:

- -r . - P = a + a aaz + a4ae + a r 2

1 d rd = -Jz b b + b 2# + b a + ba. + br 2, and (13)
; dr dr 1 3z 4e

d 1 d ra -j - r(cl + + C az + c4ae +csr)a" r F " rae 1 - j 2# + 6+c

vhere p is the dimensionless charge density with en0 replaced by

dimensionless no, v replaced by dimensionless to - ub and r replaced by

r/b in Eq. (10). Similar substitutions are made in the previous

expressions for Jz -* Jz and J -* je"

The following equations for the coefficients result:

4s1 a a1  M -Zn0 ,

4t 1 - b1  a -Zno 0

16s 2 - a 2 s 1 + a3 t I + a4 u1 + a5  W Z 2nos /r, 0 - Z2 n,0  / - 3Zn0V/2

16t2 0 b2 s1 + b3 t1 + b4 uI + b5  W Z2nOtl/y0 - Zno0%u
2 /2

eu2 - c1  -Zn ,

9



24u 3 M c 2s1 + c3 t +c 4u1 + c5  = Z2n0 ws1/Y- Z2no2ul/Yo - 3Znoo3/2

s3 = a2s2  2  +at a4u2  = Z2n02/0 - Z2n0 u210',

and

36t 3 = b2s2 + b3t2 + b4u2  = Z2n0 t2/Y0 . (14)

Note that all the coefficients are determined explicitly except u1 ,

which will be found later. Coefficients of order n depend on those of

lover order. Specifically, sn - n0/Y (sn_1 + WUn-i), tn - no/y tnl

and un - noi/Y (Sn_2+4Un_2). Therefore the pover series converge

rapidly and can be terminated provided no/Y0 << 1. Note that this

condition, which is essentially the requirement for ignoring nonlinear

terms in the potentials, is different than the condition for rapid

convergence in expansions in perpendicular momenta.

From nov on ve consider the case of an external solenoid of

(dimensionless) field So and replace u1 in the above equations with u1

+ BO/2 where u1 from nov on refers only to the self-field contribution.

Ve obtain

2 B0r2 Zn0. _4
ra u ur 2 8 n

1 + y- -2

(32 Z2n. 2  2 23
- zno Z no0 0 U1 Z n0 2oB0  Zn03 r6

96o 24o + 48ro 16
(15)

-Zn 0  - 3 n2 _ 6Zn0 
2

0 - 4Z2n0wul - 2Z2n0 m80  
4

no+ 64yo r ,and

a Zno 0 r2  0Z3 n % Zno "24

4 64, 0  32 J

10



Ve vill need the following expressions to the proper order

2  y2
wra e  wu 1r w80 r

- -Y - -Y-0-o
-Znor 2  Z2noaa1r

4  Z2nO
r 4

- -- 1 Znu , and (16)
0 4y0 16 2 322 a(

a z  -Zno0 0r
2

To 4To

To lowest order ve expect BO 0  - w, so the terms in /y

containing r4 can usually be ignored.

7. EXPRESSION FOR THE BEAM RADIUS

The beam edge radius R is obtained by finding the domain where the

argument of the square root in the expression for X in Eq. (3), is

positive. To this order the beam is confined to spatial regions

satisfying

2

1 2Z + - z 2 r 2 0 ,and

2 2

ve assume 1 - Tb/TO > 0 so that the beam is not hollov. The outer

cutoff radius, R, of the beam is then the solution of

2

+2 + B 0 . (17)

11



8. CONSIDERATION OF CANONICAL ANGULAR MOMENTUM

The canonical angular momentum is L*(r) - <L> = <r(pe + ZeAe/c)>.

Expanding this, we obtain

L /n 0 Ymc - r2 (3/2 - yb 2 2O2 + 3c~r 2 + 3Z6)rae/yo

- 3Z#/Yo + i~~z/o + Zrae/ YO

L /n~y 0mc - r 2 ( w(3/2 - yb 2/2yo 2  + Zu 1/y 0 + ZB0/2y 0 )+

r 4( 303 + Z2wn 0[ 3 %2 /y

+ 3Zco'[ u 1 + B 0/2]/y 0 ). (18)

For a non-immersed cathode, as is the case for the SLIA experiment,

12nrL*drmO. (19)

Eq. (19) relates the parameter 6) to the external field, yo, 130 and U1 .

Other diode configurations lead to different values for the beam's total

canonical angular momentum [5, 2, pp. 559-5691.

9. DETERMINATION OF THE AXIAL SELF-INDUCED MAGNETIC FIELD

The integration of Faraday's law gives the self-induced

(dimensionless) axial magnetic field as

B 23s jjdr -ZnOea 2 /2 + 3Znou3R4/B + Z2 n0.R 4 /4y 0 (ZnO/4) (20)

- 2u1

12



If Top and n are chosen, then this expression for u1 , Eq. (17) for

the beam radius R, and Eqs. (18) and (19) for the zero canonical angular

momentum give three (nonlinear) equations for the unknowns Ul, R, and w,

and the equilibrium is completely specified.

In the simulations to be presented later, the beam is inside a

conducting cylinder of radius R . In this case, the relationship for u1
ist - 2  + 2 - 2/ 2"
s u1  -u2 R 4/R + (1-R 2/Rw )e"dr/2. This expression accounts for

the axial magnetic field produced by the image currents.

10. SPECIFICATION OF THE EQUILIBRIUM IN LABORATORY PARAMETERS

The Vlasov equilibrium was specified in terms of four parameters,

no, Yo, 0 and * with certain restrictions on their values so that the

expansion is valid. Normally, however, the four parameters commonly

chosen are the beam energy, beam current, emittance and canonical

angular momentum.

Ve have seen that conditions on the canonical angular momentum are

closely related to the value of a. Clearly, bean current is correlated

with n0 . In an experiment the beam electrons are created with an energy

determined by the potential on the anode foil. The bean usually

propagates inside a conducting cylinder, so the field energy must be

taken from the bean. Note that the tube boundary, Rv, appears here if

we wish to relate the diode voltage to. the appropriate value of y0 .

Ve define the normalized perpendicular RMS emittance, tn' in the

relativistic setting, through

en2 2 a <<r2>><<pr2 + p2>> - <<rpr>>2 _ <<rpe> 2  (21)

where

<<g(r,prP 0 , pz>> a Ifd 3p2ardr / jfd3 p2xrdr. (22)

13
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The emittance is related to the amount of the beam's energy found in

"undirected" transverse motion 161. The Vlasov parameter 0 is a measure

of how much of the beau's momentum is directed axially and if the other

parameters are fixed, increasing % will decrease the transverse emittance.

Figures la-c show the beam current, emittance and cutoff radius, R,

as functions of the parameters in the approximate Vlasov equilibrium. We

have fixed Yo " 9. B0 takes the values 4.5 kG (dashed), 5.5 kG (solid),

and 6.5 kG (dotted). % is set to .97, .988 or .993. The assumption of

zero total canonical angular momentum is made. Note that the

approximations made in this model become less accurate as the parameter n0
increases in the figures.

11. PROOF-OF-CONCEPT EXPERIMENT (POCE) IN THE SPIRAL

LINE INDUCTION ACCELERATOR (SLIA)

The SLIA is a proposed compact high-current electron beam accelerator

[31 which is being developed and studied experimentally at Pulse Sciences,

Inc. SLIA uses induction cavities to accelerate the beam and a solenoidal

magnetic field for transport in the straight sections. Transport around

the bends is accomplished using strong focusing stellarator windings (i.e.,

twisted quadrupoles) augmented with a vertical magnetic field. The beam

line is shown schematically in Fig. 2. The transport lines are isolated

from each other except in the acceleration region. In the POCE a 10 kA, 35

ns beam will be accelerated to 9.5 ReV from 3.5 MeV in steps of 1.5 MeV.

The motivation for this paper came from attempts to simulate the

FOCI experiment [7). Figure 3a shows a simulation of a 10.7 kA, y - 9.3

beam with a normalized lMS emittance of .34 ca-rad in a 5.5 kG solenoidal

field. The beam particles are loaded with a K-V distribution in the

rotating frame with the correct moments for a matched equilibrium.

Nevertheless, the beam radius exhibits groing oscillations at the

envelope frequency. In this example the (transverse) emittance actually

decreases slightly. After many aters the beam radius oscillations damp.

This behavior indicates that the K-V equilibrium is not a good kinetic

equilibrium for these beam paramters.

14



The next figure shovs the results of a simulation vith the beam

initialized vith the equilibrium developed in this paper. Specifically,

no - 1.4x1012 per ca3, y 0 - 9, % 0 0.988 and B0 - 5.5 k. The

numerical gridding and number of simulation particles is the same for

the tvo runs. The result indicates a much better choice for

initialization. For this run the cutoff radius is R - 0.70 cm. Taking

the scale length as b - 0.70 cm, the dimensionless w - -0.11,

dimensionless no/y 0 - .27 and 1 - %2 - 1/y 0
2 . .012 . The maximum

values assumed by the potentials vere /1y0 - .069, az/y0 - .068,

a9/yO - .0027 (self-potential), b2Bo/2y0 - .088.

12. CONCLUSIONS

Ve have derived an approximate equilibrium for an intense electron

beam propagating in a pure solenoidal field. This equilibrium is a

higher order approximation to a true Vlasov equilibrium than the K-V

equilibrium. It includes space charge depression effects, the shear in

the longitudinal momentum and the self-induced longitudinal diamagnetic

field. Simulations confirm the theoretical results. Contemporary and

proposed experimental beams have parameters for vhich these effects may

be measurable, even though experimental beams tend to have rounded

profiles.

13. ACKNOLDGMENTS

Ve vish to acknovledge helpful discussions vith Dr. I. Haber and

Dr. I. Bernstein.

This york vas supported by the Defense Advanced Research Projects

Agency under ARPA Order 7781 and monitored by the Naval Surface Varfare

Center.

15



14. REFERENCES

[i] I.M. Kapchinskij and V.V. Vladimirskij, "Limitations of proton beam

current in a strong focusing linear accelerator associated vith the

beam space charge," Proceedings of the International Conference on

High Energy Accelerators, p. 274, CERN, Geneva, 1959.

[2 R.C. Davidson, Physics of Nonneutral Plasmas, Reading, NA: Addison-

Wesley, 1990.

13] V. Bailey, L. Schlitt, M. Tiefenback, S. Putnam, A. Mondelli, D.

Chernin, and J. Petillo, in Proceedings of the 1987 IEEE Particle

Accelerator Conference, Nev York: IEEE Press, 1987, pp. 920-922. V.

Bailey, D. Wake, J. Lidestri, and R. Curry, "Magnet Design For SLIA

Proof-of-Concept Experiment," to appear in Proceedings of the 1991

IEEE Particle Accelerator Conference.

[41 D.A. Hammer and N. Rostoker, NPropagation of High-Current
Relativistic Electron Beams," Phys. Fluids 13, 1831 (1970).

[51 M. Reiser, "Laminar-Flov Equilibria and Limiting Currents in

Magnetically Focused Relativistic Beams," Phys. Fluids 20, 477

(1977).

161 E.P. Lee and R.K. Cooper, "General Envelope Equation for

Cylindrically-Symmetric Charged Particle Beams," Part. Accel. 7, 83

(1976).

[71 G. Joyce, J. Krall, and S. Slinker, "ELBA - A Three Dimensional

Particle Simulation Code," in Proceedings of the Conference on

Computer Codes in the Linear Accelerator Community, LANL Report LA-

11857-C, Santa Fe, NH, July 1990, pp. 99-102.

16



rW

0- .0 0

o* F+ I Iw

_ ~ 0 0.

- N.0 0
v0%

4. I
0 V) 530:5;PC

C I I I% c v in.b0

r- QjI 0 4.p .~

CD~ ..a 1 TU

.f. 4- .4 nw

wL WL w C)

CD CD C bo 17

4.1 C04 I
E-) C Er L

w oo



i

I .OE+01

10=,97

R 1. OE+0 -

M
S

E -'- -"1
EMM 00.988

T I. E-0I

-- -- -- - -- .

Pe0 •993

I1 ,0E-021 . . .... I , , , ,,, ,;1.,,,
I. OE*'0 l. OE+I I. OE+12 I1. O+I3

NO

Figure lc. Normalized RMS emittance Ch/c

(cm) as a function of n (cm-3) for To - 9.
The other parameters art the external
solenoidal field B - 4.5 kG (dashed), 5.5
kG (solid), and 6.9 kG (dotted) and 0 -
.97, .988 and .993.
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